George Read Hall The University of Delaware

Eric Alwine Structural Option Thesis – April 2006 Dr. Boothby

Presentation Outline

Introduction

- Existing Structural System
- Problem Statement
- Problem Solution
- Depth Study
 - Alternate System Design
- Breadth Study
 - Cost Analysis
 - Construction Schedule
- Conclusions
- Acknowledgements

Introduction

Introduction

Project Team: Architect: Ayers/Saint/Gross **Construction Manager:** Whiting-Turner **Structural Engineer:** Skarda & Associates **MEP & Fire Protection:** Sebesta Blomberg & Associates Civil Engineer: Tetra Tech, Inc. **Code Consultants:** Koffel & Associates

Introduction

- Location: Newark, Delaware
- 5 story dormitory
- 129,000 ft²
- Cost: \$27 Million
- Construction: May 2004 Aug. 2005
- Design-Bid-Build

Footings and Basement Wall:
Continuous and spread footings

Soil Bearing Capacity = 4000 psf

16" thick concrete basement walls reinforced with #4@12 both ways, both faces

5" thick slab with 6 x 6-W 1.4 x 1.4 welded wire mesh

Metal stud bearing walls 16 gauge 50 ksi

Bearing Wall Schedule								
Level	Studs							
5th Floor	6@16							
4th Floor	6@16							
3rd Floor	2-6@16							
2nd Floor	3-6@16							
1st Floor	3-6@16							

Hambro composite floor system 14" Deep Joists with a 2³/₄" concrete slab

X-braced shear walls

50 ksi light gauge metal straps

 Prefabricated light gauge metal trusses spaced at 4'-0" OC

- 16 gauge
- 50 ksi

Building Footprint

Typical Bay with Interior Bearing Walls

Typical Bay with Interior Wide Flange Beams

Building Section

Problem Statement & & Problem Solution

Problem Statement

- The existing lateral force resisting system is inadequate to resist the calculated seismic forces.
- In Technical Assignment #2, several different floor systems were determined to be worth further investigation.
- Is there a more economical structural system?

Problem Solution

New Structural System
 Reinforced Masonry Shear Walls
 Precast Hollow Core Planks
 Masonry Bearing Walls
 Cost Analysis

Construction Schedule

Depth Study: Alternate Structural System Design

 Seismic analysis controls lateral force resisting system design

Level	w _x	h _x	w _x h _x ^{1.0}	C _{vx}	F _x	Shear
Roof	411.3	50	20565	0.048654	23.43	-
5	3871.6	41.333	160024.8	0.378594	182.33	23.43
4	4075	31.333	127682	0.302076	145.48	182.33
3	4075	21.333	86931.98	0.205668	99.05	327.81
2	4239.2	11.333	48042.85	0.113662	54.74	426.86
Base	-	-	-	-	481.6	481.6
			422681.6	1		

Existing Shear Wall Layout

New Shear Wall Layout

- Seismic forces distributed according to rigidities
 Direct Shears
- Direct Shears + Torsional Shears

Design Shear Wall Loading

- 8" Grouted CMU's
- No shear reinforcement required
- #8 Bars for flexural reinforcement

Floor	Reinforcing
5	1-#8 Bar
4	1-#8 Bar
3	3-#8 Bars
2	5-#8 Bars
Base	8-#8 Bars

Typical Shear Wall Reinforcing Detail

Superimposed Dead Load = 25 psf Live Load = 40 psf

Total Load = 1.2(25) + 1.6(40) = 94 psf

Span = 23'-6"

- 8" Deep
- 4'-0" Wide
- Lightweight concrete
- 6 ³/₈"ø straight prestressing strands
- 2" Normal weight concrete topping

Strand		Span, ft																						
Code	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	
	320	277	242	211	186	163	144	127	113	100	88	78	69	60	53	45	-	-	-					
66-S	0.4	0,4	0.4	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.4	0.4	0.3	0.3	0.2								
	0.4	0.5	0.5	0.5	0.5	0.4	0,4	0.3	0.3	0.2	0.0	-0.1	-0.3	-0.5	-0.7	-1.0		-	1.0		1.1	_		-
0		327	286	251	222	196	174	155	100	23	109	98	87	77	69	61	52	43	1000					
76-S	1	0.5	0.5	0.6	0.6	0.6	0.7	0.7	7 0.7 0.7 0.7 0.7 0.6 0.6 0.6 0.5 0.4 0.3															
	0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.5 0.4 0	0.3	0.2	0,1	-0.1	-0.3	-0.6	-0.9	-1.2															
	-			327	290	258	231	206	185	167	150	135	122	110	99	90	81	72	62	53	45		1-00-00-0	
58-S				0.8	0.8	0.9	0.9	1.0	1.0	1.1	1.1	1.1	1.1	1.1	1.1	1.0	1.0	1.0	0.9	0.8	0.7			
				0.9	0,9	1.0	1.0	1.0	1.0	0.9	0.9	0.8	0.7	0.6	0,4	0.2	0.0	-0.2	-0.5	-0)9	-1.3			
	-		-		323	304	278	250	225	204	184	167	151	138	125	114	103	93	83	73	64	56	48	
68-S					1.1	1.1	1.2	1.3	1.3	1.4	1.5	1.5	1.5	1.6	1.6	1.6	1.6	1.6	1.5	1.5	1.4	1.3	1.2	
					1.2	1.3	1.3	1.4	1.4	1.4	1.4	1.3	1.3	1.2	1.1	0.9	0.8	0.6	0.3	0.0	-0.3	-0.7	-1.2	
332	313	297	279	263	238	216	197	179	163	149	136	125	113	102	91	81	72	64						
78-S					1.3	1.4	1.5	1.6	1.7	1.7	1.8	1.9	2.0	2.0	2.1	2.1	2.1	2.2	2.2	2.2	2.1	2.1	2.0	
100					15	1.6	17	17	1.8	1.8	1.8	1.8	1.8	1.8	1.7	1.6	1.5	1.3	1.1	0.9	0.6	0.2	-0.1	

PCI Handbook Design Tables

Typical Exterior Bearing Wall Detail

Typical Interior Bearing Wall Detail

Typical Interior Bearing on Wide Flange Beam

Masonry Bearing Walls

Empirical Design Method 12" Hollow CMU's

Exterior Wall

Floor No	. Plank Size	Self-weight	Total DL	Live Load	Load from wall above	Load from supported floor	Estimated wall weight	Wall load	Wall Stress
5	8" + 2	68	93	40	-	1529.5	555	2084.5	14.5
4	8" + 2	68	93	40	2084.5	1529.5	555	4169	29.0
3	8" + 2	68	93	40	4169	1529.5	555	6253.5	43.4
2	8" + 2	68	93	40	6253.5	1529.5	555	8338	57.9

Interior Wall

Floor	No.	Plank Size	Self-weight	Total DL	Live Load	Corridor Live Load	Load from wall above	Load from supported floor	Estimated wall weight	Wall load	Wall Stress
5		8" + 2	68	93	40	100	-	1829.5	555	2384.5	16.6
4		8" + 2	68	93	40	100	2384.5	1829.5	555	4769	33.1
3		8" + 2	68	93	40	100	4769	1829.5	555	7153.5	49.7
2		8" + 2	68	93	40	100	7153.5	1829.5	555	9538	66.2

A 11-----

Masonry Bearing Walls

 Compare actual stresses to allowable
 1000 psi unit strength required
 Type N mortar

	vinowanie coutbi	Costac Stresses						
	based on gross cross-sectional							
	area, psi (I	ЛРа) ^(а)						
Gross area compressive	Type M or S	Туре N						
strength of unit, psi (MPa)	mortar	mortar						
Solid concrete brick:								
8000 (55) or greater	350 (2.41)	300 (2.07)						
4500 (31)	225 (1.55)	200 (1.38)						
2500 (17)	160 (1.10)	140(0.97)						
1500 (10)	115 (0.79)	100 (0.69)						
Grouted concrete masonry:								
4500 (31) or greater	225 (1.55)	200 (1.38)						
2500 (17)	160 (1.10)	140(0.97)						
1500 (10)	115 (0.79)	100 (0.69)						
Solid concrete masonry units	:							
3000 (21) or greater	225 (1.55)	200 (1.38)						
2000 (14)	160 (1.10)	140 (0.97)						
1200 (8.3)	115 (0.79)	100 (0.69)						
Hollow concrete masonry uni	its:							
2000 (14) or greater	140 (0.97)	120 (0.83)						
1500 (10)	115 (0.79)	100 (0.69)						
1000 (6.9)	75 (0.52)	70(0.48)						
700 (4.8)	60 (0.41)	55 (0.38)						
Hollow walls (noncomposite								
masonry bonded ^(b))								
solid units:								
2500 (17) or greater	160 (1.10)	140(0.97)						
1500 (10)	115 (0.79)	100 (0.69)						
hollow units	75 (0.52)	70 (0.48)						

NCMA TEK Notes: Allowable Stresses

Breadth Study: Construction Management

Cost Analysis

Using RS Means Building Construction Cost Data 2006:

Cost of New System = Cost of Actual System =

\$3,176,357 <u>\$3,200,000</u> **\$23,643**

Construction Schedule

- A construction schedule was created using Primavera Project Manager
 - Building broken into 4 sections
 - Schedule flexibility based on crew size
- Duration of new system = 6 months, 2 weeks
- Duration of actual system = 6 months

Construction Schedule

Conclusions

Conclusions

New system is a viable alternative

 Savings of \$23,643
 Approx. same construction time

 Recommendations:

 More consideration for masonry construction in similar projects

Acknowledgements

The University of Delaware

- Mr. Joe Filippone Plans Room Technician
- Ms. Penny Person Senior Project Manager
- Ayers/Saint/Gross Architects & Planners
- Sebesta Blomberg & Associates
- Skarda & Associates
- Tetra Tech, Inc.
- AE department
- Family and friends

Questions?